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Abstract. Electron transitions involving the emission of transverse optical (TO) phonons in 
polar semiconductors are discussed. Distinction is made in particular between the con- 
tributions from the TO modes to the optical deformation potential interaction and the 
interaction of the TO modes arising via their electromagnetic vector potential. The latter is 
due solely to the polar nature of the semiconductor. A theory for the emission rate T,o due 
to the interaction of electrons with the vector potential is described and the calculated rate 
is compared with the corresponding rate rDei involving the optical deformation potential 
and with rLo, the emission rate arising from the well known Frohlich mechanism due to the 
polar longitudinal optical (LO) modes. Typical values are obtained for the case of GaAs in 
the homogeneous bulk. 

1. Introduction 

The recent surge in research activity constituting the field of low-dimensional structures 
(LDS) is partly motivated by the possibility of fabricating faster and smaller electronic 
devices, e.g. those based on III-V compounds. Of considerable interest in this context, 
therefore, is the transition rate for carrier-energy relaxation via the various possible 
channels (see, e.g., Conwell 1967, Ridley 1988). A great deal of effort is devoted to the 
evaluation of such relaxation rates, both experimentally and theoretically (for an account 
see, e.g., Shah 1987). Like other electronic attributes of LDS, the relevant theoretical 
work here requires first an examination of how the theory in the homogeneous bulk can 
be suitably adapted to deal with the cases in low dimensions. 

In a non-polar semiconductor the optical phonons, both transverse (TO) and longi- 
tudinal (LO), interact with the carriers via the so-called optical deformation potential 
interaction (see, e.g., Ridley 1988). In polar semiconductors there are additional effects 
due to the polar nature of the semiconductor which, at low energies, constitute the 
dominant influence on the carrier properties. The LO phonons exhibit Coulomb fields 
which manifest themselves in the coupling to free carriers via the Frohlich interaction. 
Less well known are the corresponding electromagnetic properties of the TO modes, as 
well as their influence on the carrier properties in polar materials. These issues constitute 
the main concern of this paper, particularly with reference to III-V compounds such as 
GaAs. 

In III-V compounds at room temperature, the emission of LO phonons is indeed 
regarded as the main channel of energy relaxation for carriers in the homogeneous 
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bulk. These longitudinal modes have Coulomb fields whose influence on the carriers is 
envisaged to be much stronger than that due to the electromagnetic effects arising from 
the transverse optical (TO) counterparts. The electromagnetic interactions of the TO 
modes have accordingly been ignored, except for the high energies (Frohlich 1937. 
Callen 1949) at which the optical deformation potential interaction becomes significant. 
It appears, however, that there is at  present no  quantitative analysis of the comparison 
between the emission rates arising via the LO and the TO channels in the same polar 
material. As  we pointed out above. such an analysis is an essential prerequisite of the 
corresponding treatments of energy relaxation in the cases of low dimensions. 

A considerable amount of work has already been done on the theory of LO phonon 
emission in quantum wells and superlattices (Ridley 1982, Riddoch and Ridley 1984, 
Lassnig 1984, Sawaki 1986, Babiker and Ridley 1986, Babiker etul1987,1988, Wendler 
and Bechstedt 1987). The  corresponding experimental work is gathering momentum 
(Devand et a1 1989, Westland et al1988, Abstreiter et a1 1988, Seilmeier et UI 1987). A t  
present it appears that there is no  clear quantitative picture of energy relaxation in the 
various situations in LDS. O n e  of the theoretical predictions, however, is that, besides 
electron and phonon resonances, the LO phonon rate decreases with decreasing well 
width in quantum wells and superlattices (Ridley 1987, Babiker et a1 1987, 1988). For 
very narrow wells and for free standing wafers and wires (Leburton 1984, Degani and 
Hipolito 1988, Cibert et a1 1986) the LO phonon rates are expected to be considerably 
diminished relative to \~alues in the homogeneous bulk. The corresponding elec- 
tromagnetic attributes of the TO modes are also expected to suffer changes relative to 
the case in the bulk which, as we have emphasised, has not yet been explored. 

The  purpose of this paper is therefore to take the first essential steps by developing 
the theory for electron interactions involving the electromagnetic properties of the TO 
modes. and we apply the theory to GaAs  as a typical III-V compound. It is our intention 
in future reports to extend the theory to the important two- and one-dimensional cases 
mentioned above. The  paper is organised as follows. In 5 2 we write down the field 
equations governing the TO vibrations in a bulk polar semiconductor, and derive the 
corresponding free-field Hamiltonian from an energy flow theorem. This is followed in 
8 3 by the quantisation of the TO modes. In 8 4 we write down the total Hamiltonian 
including the coupling of electrons to the vector potential of the TO modes and outline the 
calculations for the transition rate using the golden rule. We  also exhibit the comparison 
between the TO and the optical deformation interaction as well as the LO interaction for 
the case of electrons and we explore the general results by application to the case of 
GaAs.  Section 5 contains conclusions and further comments. 

2. Basic theory 

The transverse optical lattice vibrations in polar semiconductors are synonymous with 
phonon polaritons(see. e.g. ,  MillsandBurstein 1974). The basictheorycanconveniently 
be described using the hydrodynamic continuum treatment by Born and Huang (1968). 
Here we follow the extended version of the Born and Huang treatment as given by 
Babiker (1986) including dispersion. The  equations for the TO modes can be separated 
from those for the LO modes and can be written as follows 

V * E  = 0 = V . B  (2.1) 

D = E + 4xP ( 2 . 2 )  
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V X E =  - B / c  v x B = ( l / C ) D  (2.3) 
U = - W ~ U  + gE - P2V2u 

P = gu + [ ( E , ,  - 1)/47d]E 
(2.4) 

(2.5) 
where 

g = [U& - E2)/47d]1/2. 

Here allfields are transverse (i.e. have zero divergence, as in equation (2 .1)) .  E and B 
are the transverse electric and magnetic fields associated with the TO vibrations. P i s  the 
transverse polarisation field. D is the corresponding electric displacement field and U is 
the transverse ionic amplitude field, as defined by Born and Huang (1968). The par- 
ameters E ~ ,  E,,  wT and /3 characterise the polar material with and E ,  the static and 
high-frequency dielectric constants, wT is the limiting transverse optical frequency and 
/3 is typically an acoustic velocity, i.e. such that /3 c with c the velocity of light in uucuo. 

The field equation follows directly from the two equations in (2.3). We have 

V X V X E = - D/c2.  (2.7) 
We assume the spacetime dependence exp(ik. x - iwt) for a mode of frequency CO and 
wavevector k .  Then from equations (2 .2) ,  (2.4) and (2.5) we have, by eliminating U and 
P i n  favour of E ,  that 

D = E(k, w)E (2.8) 

~ ( k ,  U )  = E ,  + ( E O  - E . ; ) w $ / ( w ~  - W; + p 2 k 2 ) .  (2.9) 

V 2 E  - ( w * E ( ~ ,  w ) / c ~ ) E  = 0 (2.10) 

where 

We therefore find from (2.7) with (2.1) 

which is of course the well known field equation for all types of polaritons; different 
polariton species are obtained by changing ~ ( k ,  w).  The corresponding dispersion 
relation 

k2c2/w2 = ~ ( k ,  w )  (2.11) 

is the familiar polariton dispersion relation (see, e.g., Mills and Burstein 1974). Note 
however that with the E(k, w )  given by equation (2.9) this is not the usual phonon- 
polariton dispersion relation because of the p2k2 term in the denominator of the second 
term. As we see below, the presence of this p2k2  term (due to the inclusion of spatial 
dispersion terms) accounts for the observed decrease of TO frequency with wavevector 
at large k + wT/c. 

The dispersion relation is illustrated in figure 1 by plotting w/wT against kc/wT.  The 
horizontal axis is on a logarithmic scale and this tends to exaggerate the gradients for 
small and large kc/wT. Note in particular that for large k >> W ~ / C  (as shown in the inset 
to figure 1 )  the dispersion relation is effectively given by 

w 2  = W ;  - p 2 k 2 .  (2.12) 

This is the region normally explored for TO dispersion and it is clear that the presence of 
the P2k2 term (originating in equation (2.4)) accounts for this experimental fact. 

Associated with the electromagnetic fields and polarisation currents (obeying the set 
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3 t  

k c / w ,  

Figure 1. Polariton dispersion curves for GaAs. The parameters are cur = 270 cm..', /3 = 
5 x 10'cm s - ' ,  E , )  = 12.93. E ,  = 10.9 and the plot is of w/wT against ck/w,. The region of 
large k is shown by the inset 

of field equations (2.1) to (2 .5))  is an energy conservation relation of the form 

- (a/dt)[(l/8n)(E2 + B')]  = J * E  + V.[(c/4n)(E X B ) ]  (2.13) 

with 

J = P  (2.14) 

as the transverse current. This is the well known Poynting theorem giving the rate of 
decrease in energy density as equal to an energy-loss term J - E plus the divergence of 
an energy flux in the form of the Poynting vector (see. e.g., Landau and Lifshitz 1975). 
For a mode of frequency w and wavevector k we have from (2.2) and (2.8) that 

J = P = [ (E(k ,  W )  - 1)/4n]E. (2.14a) 

Thus (2.13) becomes 

- (d/dt)[(l/8rC)(E(k, W ) E *  + B y  = V.[(c/4n)(E x B ) ]  (2.15) 

and we can write 

( a x ( k ,  w)/dt> + v * 9 ( k ,  0) = 0 (2.16) 

where X ( k ,  w )  and F(k,  CO) are, respectively, the energy density and the Poyntingvector 
associated with the mode of frequency w and wavevector k .  Explicitly we write 

X ( k ,  U )  = ( l / S n ) ( & ( k ,  w)E* + B 2 )  (2.17) 

with ~ ( k ,  0) given by (2.9) and 

9 ( k ,  0) = (c /4n) (E x B ) .  (2.18) 

Thus we are able to derive the Hamiltonian density for the polaritons without recourse 
to the conventional procedure which normally starts from a Lagrangian. The next steps 
require (2.17) for the quantisation of the TO polaritons in the homogeneous bulk. 
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3. Field quantisation for TO 

All transverse electromagnetic fields (typified by photons in free space) are characterised 
by two degrees of freedom which are made manifest via the wave polarisation vectors 
&(I) and &(*I for each k.  The free TO field Hamiltonian can now be written in the form 

where, in view of (2.17) 

X y k ,  w ,  x) = (l/8Jr)(&(k7 w)E(”)*  + B q  ( 3 4  
with E @ )  andB@) denoting the electric and magnetic fields corresponding to the mode of 
wave polarisation A, wavevector k and frequency w.  The spatial dependence in E(’) and 
B(*) has been suppressed for convenience. 

The system of transverse fields can be expressed in terms of the transverse vector 
potential A(i*) such that 

E @ )  -(l/c)A(’.) B(’) = v x A(1). (3.3) 

~ ( 1 )  = ci’*)?(A)(aiA) e1k.x + HC) (3.4) 

Thus field quantisation can proceed by writing 

where CLA) is the mode amplitude to be determined by the usual procedure. The set of 
orthogonal unit vectors &(‘I, d2) and k (with carets denoting unit vectors) must satisfy the 
following relations 

ii,’ (3 .5)  go.) . k 0 $$’I .$?‘I = 6 

& ( I )  x t ( 2 )  = k .  . . etc (3.6) 
and the following sum rule (see, e.g., Power 1964) 

(3.7) 

where i andjdenote Cartesian components. Finally the operators ai’,) and a f - a r e  Boson 
operators satisfying the commutation relations 

[ u p ,  U p ” ’ ]  = 6Ai, 6 ( k  - k ’ ) .  (3.8) 
The mode amplitudes CfI are fixed by the requirement that (dropping zero-point 
energies) 

H:  -+ E 1 d”kfiwaj).)’af’ .  
A = 1 . 2  

We find straightforwardly for the field amplitude 
CL>>) = (fio/4~rZk2 1 .  112 

(3.9) 

(3.10) 

Thus the total vector potential operator associated with the TO phonon polaritons is 
given by 

(3.11) 
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provided that 

w2&(k ,  w )  = c2k2  (3.12) 

with ~ ( k ,  U) given by (2.9). The essential unperturbed field states on which the vector 
potential operates are written 1 {k ,  A}), representing one TO polariton of wavevector k 
and polarisation A. The no-polariton state is written as IO). These are eigenstates of 
HB, so we can write 

H! I {k ,  A}) = fiw(k) I { k ,  A>) 
with w given by the solutions of (3.12). 

(3.13) 

4. Coupling to electrons 

We describe the conduction electrons in polar materials via the effective-mass approxi- 
mation assuming parabolic bands. Their coupling to the polaritons manifests itself by the 
usual minimal-coupling prescriptioninvolving thevector potentialA. The (electron + TO 
field) Hamiltonian including the interaction is thus given by 

H = [ P  - (e/c>A(x)l2/2m* + H: (4.1) 

where HF is given by (3.9) and m* is the effective mass for electrons in the polar material. 
P and x are the electron momentum and position operators satisfying the usual com- 
mutation relations 

[P , ,  x,] = -ifis,. 

We can write from (4.1) 

H = Ho + H,,, (4.3) 

where Ho is the zero-order Hamiltonian of the two subsystems (electrons + TO field), 
i.e. 

H o  = P2/2m* + HF 

Hint = -(e/m*c)A(x) . P  + (e2/2m*c2)A2(x) 

(4.4) 

(4.5) 

and Hint is the interaction Hamiltonian 

where we have made use of the fact that V .A = 0, as is appropriate for TO modes. 
The unperturbed, i.e. zero-order, states of the system satisfy the eigenrelations 

where If) and li) are electronic states of energies Ef and E,, respectively, while i{k, A}) 
stands for a TO field state containing one mode of polarisation h and wavevector k.  10) is 
the field vacuum. 

To leading order in the electron-To coupling the term H’ = -eA - P/m*c in (4.5) will 
then effect transitions between the states described by (4.6) and (4.7). The total transition 
rate from the initial state / i ;  0) to all states I f ,  { k ,  A}I involving the emission of To modes 
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is given by 

X 6(E; - Ef - hW(k)) (4.8) 

where .Ei = Pf/2m* and the vector potentialA(x) is given by (3.11) with ~ ( k )  given by 
(3.12). The matrix element in (4.8) can be evaluated straightforwardly and yields 

(i; 01 - (e/m*c)A -Plf; {k ,  A}) 
= - ( e / m * c ) ( h ~ / 4 ? ~ ~ k ~ ) ~ / ~ 6 ( P ~  - Pf - hk)bQ) -Pi (4.9) 

where we have made use of the transversality condition (3.5). On substituting from (4.9) 
into (4.8) and carrying out the integral over P,we find 

The sum over the polarisation A. can be readily done using (3.7) to obtain 

2 IP; * & ( ' . ) 1 2  = P' sin20k 
1;=1,2 

(4.10) 

(4.11) 

where Ok is the angle between k and Pi. The subsequent steps are familiar, and they lead 
from (4.10) to the following expression: 

with 

hk, = Pi 5 (Pf  - 2 m * h ~ T ) ' / ~  (4.13) 

and we have set w = 1 0 ~  in the integrand of (4.10) (see the inset to figure 1). The 
integrations in (4.12) are elementary and it is convenient to express the result in terms 
of the dimensionless variable X 

X = P;?/2m*hoT = Ei /hoT .  

We find from (4.12) 

(4.14) 

the 
for 

Equation (4.15) is the main result of this paper, giving the TO rate as a function of 
initial electron energy. In its present form this result applies to any polar material 
which the isotropic continuum model is appropriate as in 111-V compounds. 
It is instructive to compare the TO rate we have just derived with the other emission 

rates involving polar optical modes. We consider first the emission of LO modes via the 
Frohlich interaction. The corresponding transition rate can be written in the following 
form 

rLo(X) = To sinh-l[(EX - l)1/2]/(EX)1/2 (4.16) 
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where 

with 

Figure2. Transition rates TLo. T r o  and r,,,against electron energy (in units of hw,) in GaAs: 
(a )  in the low-energy region where Tro is small: (b )  in the higher-energy region. See the text 
for the assumed set of parameters. 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

The result (4.16) is well known (see, e.g., Conwell 1967, Ridley 1988) and it has been 
derived recently using a fully quantised approach (Chamberlain 1987). The quantity To 
in (4.18) characterises the LO rate since the function in (4.16) cannot exceed unity. It is 
therefore useful to write (4.15) in terms of ro. We find 

rTo(x) = r , ( & , / & , ) 1 ’ 2 ~ ~ ~ u T / m * c 2 )  

x {(2X”2 - X-1’2) sinh-’[(X - l)’1*] - ( X  - l)l’*}. (4.21) 

Finally we consider energy relaxation via the optical deformation potential. This 
effect involves both LO and TO modes (see, e.g.. Ridley 1988). The transition rate for 
emission by electrons can be written in the form 

(4.22) 

Here Do is the optical deformation constant and p 1s the mass density. my and m; are 
the longitudinal and transverse effective masses, respectively. 

We compare the three emission rates TIo, rLo and rDef for the case of GaAs. The 
parameters are 2- 12.93, E ,  -- 10.9, hw, 2- 0.036 eV, m” = 0.06 m, which yield for To 

(4.23) 

Furthermore we have m; = 1.9 m e ,  in; = 0.075 m e ,  Do  = 10“ eVm-’ and p 2- 

5.36 x lo3 kg m-3. The results are shown in figures 2(n)  and ( b ) ,  which compare the 
variations of the three rates with varying electron energy Ei / f iuL .  It is clear that the 
emission rate arising from the electromagnetic coupling to the TO modes is practically 

ro 2- 7 x 1012  s 1. 
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dominated by those due to the polar LO and the deformation potential mechanism in 
this material. 

5. Comments and conclusions 

As far as we know this paper represents the first attempt to quantify energy relaxation 
arising from the electromagnetic coupling of the TO modes to charge carriers in polar 
semiconductors. The appropriate theory has been developed here leading to the explicit 
evaluation of the corresponding emission rate rTO as in equation (4.15). The result was 
compared in particular with those arising from other coupling mechanisms involving 
optical modes, namely, the Frohlich interaction from the LO modes and the deformation 
potential involving both the LO and the TO modes. The results of the paper substantiate 
the suggestion which was always accepted on intuitive grounds that LO emission domi- 
nates energy relaxation via the Frohlich mechanism except at high energies where the 
electromagnetic influence of the TO modes competes with that of the LO modes. On the 
other hand, in the high-energy region the contributions from the deformation potential 
dominate those due to the electromagnetic mechanisms. The high- and low-energy 
regions for GaAs can be inferred from figures 2(a)  and (b) .  

The work presented in this paper provides the basis for the application of the theory 
to the case of low-dimensional structures where calculations of the various dynamical 
effects demand a re-examination of the factors contributing to the total relaxation rate. 
So far, attention seems to have been focused on how the LO rate is modified by the 
layering via modifications involving electronic band structure and LO waveforms. Similar 
considerations are clearly needed for the TO modes. This problem is now being inves- 
tigated and the results will be given in a future report. 
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